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Abstract - This paper presents a comprehensive overview of autotelic Reinforcement Learning (RL), emphasizing the role of 

intrinsic motivations in the open-ended formation of skill repertoires. We delineate the distinctions between knowledge-based 

and competence-based intrinsic motivations, illustrating how these concepts inform the development of autonomous agents 

capable of generating and pursuing self-defined goals. The typology of Intrinsically Motivated Goal Exploration Processes 

(IMGEPs) is explored, with a focus on the implications for multi-goal RL and developmental robotics. The autotelic learning 

problem is framed within a reward-free Markov Decision Process (MDP), WHERE agents must autonomously represent, 

generate, and master their own goals. We address the unique challenges in evaluating such agents, proposing various metrics 

for measuring exploration, generalization, and robustness in complex environments. This work aims to advance the 

understanding of autotelic RL agents and their potential for enhancing skill acquisition in a diverse and dynamic setting. 

Keywords - Skill Acquisition,  Reinforcement learning, Social autonomous agents, Open-Ended environments, Social Learners. 

1. Introduction  
Artificial Intelligence (AI) aims to create autonomous 

agents that can operate across diverse environments and 

complete a wide range of tasks. Researchers pursue different 

approaches, each focusing on specific drivers of learning. In 

Reinforcement Learning (RL) [1], agents learn by exploring 

their environment and using their experience to solve tasks. 

Imitation Learning (IL) [2] involves agents learning from 

expert demonstrations, while Multi-Agent Reinforcement 

Learning (MARL) [3] emphasizes cooperation among agents 

to solve collaborative tasks. Recent advancements in RL have 

demonstrated success in varied domains, such as playing Atari 

games [4], mastering chess and Go [5], and controlling 

stratospheric balloons [6]. IL, combined with transformers [7], 

has enabled generalist agents to be trained on diverse datasets 

and to perform in-context reinforcement learning via 

algorithm distillation. However, these algorithms remain 

sample-inefficient and struggle with generalization, creativity, 

and tackling novel tasks, largely because they rely on isolated 

learning signals. This research explores sociocultural 

interactions as a new avenue for AI learning inspired by 

human development. By immersing artificial agents in social 

contexts, we investigate how sociocultural dynamics impact 

learning. The first part of this study examines the formation of 

cultural conventions among agents, while the second part 

introduces a framework called Vygotskian Autotelic Artificial 

Intelligence, which leverages sociocultural interactions to 

enhance open-ended skill acquisition. 

 
Fig. 1 Dual organization of the present research. In the first part we 

take a bottom-up approach and study the self-organization of cultural 

conventions in artificial agents from social interactions. In the second 

part, we use a top-down approach to investigate the impact of pre-

existing cultural conventions on artificial agents when they interact with 

social peers 

http://www.internationaljournalssrg.org/
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2. Humans are Goal-Directed Social Learners 
Humans are an extraordinary inspiration for Artificial 

Intelligence (AI), as they are the fastest learning system 

observed. Within just a few years, children learn to crawl, 

navigate their surroundings, identify and manipulate objects, 

and even communicate with others. A key element of human 

development is the concept of goals. As defined by [8], a goal 

is “a cognitive representation of a future object that the 

organism is committed to approach or avoid,” influencing 

behaviors significantly. Children’s exploratory play is often 

driven by intrinsically motivated processes that lead them to 

invent and pursue self-generated goals.  

Their exploration is motivated by curiosity and a desire to 

experience interesting situations, evaluated in terms of 

optimal incongruity [9]. Moreover, [10] argues that for 

humans to experience pleasure during learning, they should 

engage in tasks with the optimal challenge, coining the term 

autotelic to describe intrinsically motivated individuals in a 

state of flow. 

3. Towards Interactive Social Autonomous 

Agents 
The present research seeks to bridge developmental 

psychology and modern AI methods to design embodied 

artificial agents, focusing on ”autotelic” and ”cultural 

convention” concepts. Our aim is to create interactive social 

autotelic agents by immersing them in social contexts and 

equipping them with mechanisms to construct or exploit 

cultural conventions. The groundwork for this is built on prior 

AI paradigms incorporating social elements, such as 

language-based Reinforcement Learning (RL) [11], 

instruction-based Imitation Learning (IL) and Multi-Agent RL 

(MARL) frameworks [12].  

Our work contributes by demonstrating that agents can 

use language as a cognitive tool for goal imagination. This 

research introduces two experimental contributions, focusing 

on the self-organization of cultural conventions. First, it 

explores the role of sensorimotor constraints in forming a 

graphical language using multi-modal contrastive learning in 

the context of Language Games [13]. Second, Chapter XVI 

investigates agent collaboration in the ”Architect-Builder 

Problem,” where agents use shared intentionality and 

pragmatic frames to solve tasks through cultural conventions. 

4. Background: Standard AI Paradigms 
Our contributions bridge standard AI paradigms and 

developmental psychology to investigate two fundamental 

research questions (1) the language acquisition problem (self-

organization of cultural conventions) and (2) the open-ended 

skill acquisition problem (self-organization of trajectories). In 

this chapter, we will first present standard AI problems and 

their associated families of algorithmic solutions before 

getting into the specifications of the two problems we 

investigate. 

 
Fig. 2 Social interactions in different AI paradigms. Social interactions 

and language instructions are used in both RL and IL setting to guide 

learners. Language can also serve as a cognitive tool to represent goals 

in autotelic learning. Finally, they can help agents communicate and 

cooperate in MARL 

5. Reinforcement Learning 
5.1. Problem Definition 

Reinforcement Learning (RL) involves an agent 

interacting with an environment to maximize cumulative 

rewards [1]. Formally, RL is modeled as a Markov Decision 

Process (MDP), with state space S, action space A, transition 

function T, initial state distribution ρ0, and reward function R. 

At each time step t, the agent selects an action at ∈ A, receives 

a reward rt+1, and observes the next state st+1 ∼ T (s′|st,at). The 

agent’s goal is to learn an optimal policy π∗ that maximizes 

expected return: 

. 

5.2. Value Functions 

Value functions estimate the expected reward for a state 

or state-action pair. The state-value function Vπ(s) and action-

value function Qπ(s,a) for policy π are defined by the Bellman 

expectation equations: 

Vπ(s) = Ea∼π,s′∼T [R(s,a) + γVπ(s′)], 

Qπ(s,a) = Es′∼T [R(s,a) + γQπ(s′,π(s′))]. 

For the optimal policy, the Bellman optimality equations 

are:  

V ∗(s) = maxEs′∼T [R(s,a) + γV ∗(s′)], 

a Q∗(s,a) = Es′∼T 
h

R(s,a) + γ maxQ∗(s′,a′)
i
. 
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6. Imitation Learning 
Imitation Learning (IL) [14-16] focuses on agents 

learning in a Markov Decision Process (MDP) without an 

explicitly defined reward function, instead relying on 

demonstrations of the task. This approach is particularly 

beneficial when designing a task-specific reward is 

challenging. A notable example is self-driving cars, where the 

complexity of driving makes it impractical to define a reward 

function, but ample video footage of human drivers is 

available for training. The typical formalization of the IL 

problem involves finding a policy that minimizes the 

divergence between the expert’s feature distribution qπ∗(ϕ) and 

the learner’s feature distribution pπ(ϕ), expressed as: 

 

πˆ = argminD(qπ∗(ϕ),pπ(ϕ)), (1) 

π where D is a measure of difference, such as the 

KullbackLeibler (KL) divergence. A common method to 

address the IL problem is Behavioral Cloning (BC), which 

treats imitation learning as a supervised learning task. Given a 

dataset of trajectories  with τ = 

[(s0,a0),...,(sT,aT)], the objective is to minimize the cross-

entropy loss: 

 

Lπ = − E [logπ(s,a)].  (2) 
(s,a) ∼D 

Minimizing this loss is equivalent to minimizing the KL-

divergence between the expert’s trajectory distribution P(τ|π∗) 

and the learner’s trajectory distribution P(τ|π). However, 

simple BC may suffer from distributional mismatch, where the 

learner’s policy deviates from the expert’s when operating 

outside the demonstrated state space. To address this, 

iteratively collecting new expert data is proposed.  

Furthermore, BC can only produce a policy that performs 

at best as well as the expert, which can be limiting if optimal 

expert trajectories are unattainable, prompting the exploration 

of Inverse Reinforcement Learning (IRL). IRL seeks to 

recover an expert’s reward function based on observed 

trajectories, allowing for the development of an optimal policy 

through RL.  

This process, termed Apprenticeship Learning, 

guarantees that the learned policy is consistent with a learned 

value function. Various strategies exist for deriving policies in 

IRL, including feature expectation-based methods, margin-

maximization-based methods, and parameterization of the 

policy by the reward.  
 

Recent approaches have incorporated techniques akin to 

Generative Adversarial Networks (GAN) to emulate complex 

behaviors in high-dimensional environments. Although our 

contributions do not leverage IRL, it remains a significant area 

of study for surpassing demonstrator performance through 

advanced ranking methods. 

 
Fig. 3 Interactions in an IL problem. The agent never interacts with the 

environment during learning but can interact with it to test its behavior 

(dashed lines) 

7. Multi-Goal Reinforcement Learning 
Multi-Goal Reinforcement Learning (MG-RL) extends 

standard RL by allowing agents to pursue multiple goals 

framed as constraints over one or more states. Goals can range 

from specific points to broader subspaces and even language-

based goals (e.g., ’find a red object’). A goal-driven agent 

learns a goal-conditioned policy that generates actions based 

on the current state and goal, formalized as at ∼ π(·|st,zg). In 

MG-RL, the problem is defined as an MDP with multiple 

reward functions, RG, where the agent’s behavior adapts 

depending on the goal pursued. Early work on MG-RL led to 

the development of Universal Value Function Approximators 

(UVFAs), where a single value function is learned for multiple 

goals, enabling efficient transfer learning across goals. 

Techniques like hindsight learning further improve sample 

efficiency by retrospectively using failed trajectories for goal 

learning. 

7.1. Typology of Goal Representations  

Goal representations vary across tasks. Common 

approaches include: 

• Multiple Targets: One-hot encoded goals with distinct 

reward functions. 

• State Features: Goals defined as target features (e.g., 

block coordinates, positions) with dense or sparse 

rewards. 

• Dynamic Constraints: Language-based predicates 

representing constraints to be satisfied. 

MG-RL provides a framework for training versatile 

agents capable of pursuing a diverse set of goals by leveraging 

shared knowledge across tasks. 

8. Problem Definition: Formative AI 
People possess the ability to surprise, educate, and learn 

from one another, enabling the transfer and refinement of 

knowledge across generations. Even without a shared 

language or prior understanding, such as a parent teaching a 

child to stack blocks, humans can teach and learn through 
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indirect signals and interactions. Experimental Semiotics 

studies the forms of communication that emerge when pre-

established ones cannot be used, showing that humans can 

teach and learn without explicit demonstrations or shared 

protocols. For instance, a CoCo game explored a scenario 

where an architect guides a builder to construct a structure 

using arbitrary signals. This raises the question: can artificial 

agents develop such social conventions? 

Inspired by the CoCo game, we propose the Architect 

Builder Problem (ABP), a framework where learning occurs 

through social interaction with Markov Decision Processes 

(MDPs) without direct imitation or reinforcement. The 

constraints of ABP are: (1) the builder has no prior knowledge 

of the task, (2) the architect can only communicate via signals, 

and (3) these signals have no predefined meaning. These 

challenges make ABP suitable for exploring Human Robot 

Interaction (HRI), especially in settings like Brain Computer 

Interfaces (BCIs), where signals and meanings must be 

learned interactively. To address ABP, we propose Architect-

Builder Iterated Guiding (ABIG), an algorithm inspired by 

shared intent and interaction frames. ABIG allows both agents 

to learn and refine their communication protocols iteratively. 

9. Self-Organization Theory 
The concept of emerging order stems from chaos theory 

and describes thermodynamic systems that self-organize from 

complex interactions. Formalized by cybernetician Ashby, 

self-organization refers to complex dynamical systems 

organizing around stable points called ’attractors’. An 

example is seen in the visual illusion, where perception shifts 

between two attractors: a young woman or an old woman. 

Self-organization is evident in nature, such as the formation of 

sand dunes and snowflakes in physical systems or bee hives 

and fish schools in biological systems. In technology, this 

principle enables innovations like adaptive traffic lights. 

9.1. Self-Organization in Developmental AI  

Developmental AI can be framed as adaptive systems 

where agents and their environment form coupled dynamical 

systems. This research formalizes two key problems using 

self-organization: 

(1) Language community formation among agents, seen 

as the self-organization of cultural conventions. 

(2) Autonomous skill acquisition as agents self-organize 

their behavior through internal drivers, leading to 

developmental trajectories. The autotelic approach integrates 

social interactions. These problems sit at the intersection of 

standard and developmental AI, studied further through 

language formation and the autotelic RL problem. 

10. Language Game Interactions 
Early solutions to the language game involve scoring 

tables that associate referents with utterances. Agents adjust 

scores based on communicative success, as illustrated in 

Figure 4. If predefined categories are unavailable, 

mechanisms to map visual inputs to object categories have 

been proposed. The Talking Head experiments adapt language 

games to dynamic word and meaning inventories. Inspired by 

the success of Convolutional Neural Networks, extended 

language games have been extended to image referents, where 

agents use neural networks for communication. In this 

framework, a speaker generates an utterance from two images, 

while a listener selects the target based on the utterance, as 

shown in Figure 5. Training occurs via Reinforcement 

Learning (RL) with a reward function reflecting 

communicative success. Beyond visual referents, researchers 

analyze the emergence of communication using neural agents. 

Sequences of symbols can name composite referents, and 

distinctions between agents’ compositional capabilities and 

the properties of the communication code have been 

highlighted. Environmental factors influencing 

compositionality have also been investigated. While guessing 

interactions serve as an experimental foundation for language 

formation, human communication encompasses diverse 

purposes. Thus, AI researchers have examined 

communication in collaborative tasks using Multi-Agent 

Reinforcement Learning (MARL). For example, agents have 

been tasked with car coordination at traffic junctions to avoid 

collisions. 

 
Fig. 4 Example of agents’ tabular internal models, with 3 referents and 5 

words 

 
Fig. 5 Example of agents’ neural network internal models, with 2 

referents and 3 words 

Two approaches for learning communication in MARL 

have been introduced: Differentiable Inter-Agent Learning 

(DIAL) and Reinforced Inter-Agent Learning (RIAL). DIAL 

enables agents to exchange gradients during centralized 

training, while RIAL treats messages as actions within an RL 
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framework, allowing agents to communicate without sharing 

internal states. An attention mechanism has also been added, 

enhancing agents’ communication strategies. This section 

examined the language formation framework, focusing on 

linguistic interactions through language games. We 

demonstrated the scalability of these interactions to neural 

agents and highlighted MARL’s potential for studying 

communication in collaborative scenarios. 

10.1. Emergence of Graphical Sensory-Motor 

Communication 

Our first contribution extends the neural communicating 

agent framework to visual language games via a sensory-

motor channel. Unlike prior approaches, which relied on 

idealized communication channels, we explore whether agents 

can develop a shared language within a sensory-motor 

framework. We introduce the Graphical Referential Game 

(GREG), where a speaker produces graphical utterances to 

identify visual referents among distractors, illustrated in 

Figure 7. The utterances are generated using dynamic motor 

primitives and a sketching library, with referents drawn from 

the MNIST dataset [17]. Through GREG, we investigate 

whether agents can self-organise a shared lexicon under 

sensory-motor constraints, assessing the coherence and 

compositionality of emerging signals. 

 
Fig. 6 Diagram of interactions in MARL emergent communication 

 
Fig. 7 The graphical referential game 

10.2. The Architect-Builder Problem 

Our second contribution introduces the Architect-Builder 

Problem (ABP), a novel paradigm examining goal-directed 

communication where the reward function is not accessible to 

all agents. In this setup, the architect knows the goal and 

receives rewards but cannot act, while the builder can act but 

lacks knowledge of the goal. The architect communicates with 

the builder solely through signals. The ABP addresses gaps in 

the existing literature by providing a new lens through which 

to study the emergence of communication in neural agents. 

11. Self-Organization of Trajectories: The Open-

Ended Skill Acquisition Problem 
This section examines the self-organization of trajectories 

in open-ended skill acquisition, where autonomous agents 

refine skills through environmental interaction. Agents 

navigate complex action spaces, learning from experiences to 

improve task performance. 

• Learning Objective Distributions: Agents must identify 

the support of objective distributions—valid goal 

embeddings. Some methods operate within predefined 

spaces, while others leverage past representations to 

shape this distribution using generative models for image-

based objectives. 

• Goal Selection: After establishing an objective space, 

agents require strategies for goal selection. Automatic 

Curriculum Learning (ACL) helps in this regard, 

coordinating goal sampling for long-term performance 

improvement. Hierarchical Reinforcement Learning 

(HRL) sequences goals for lower-level policies, enabling 

task decomposition. 

• Summary: We introduced the autotelic RL framework that 

fosters intrinsically motivated agents capable of open-

ended goal generation. 

• Scope: Previous studies using sensory-motor lacked the 

referential capabilities needed for generating meaningful 

communication. Our approach, distinguished by 

stochastic expressions and a decentralized structure, 

differs significantly in its methods and focus.We 

investigate factors promoting compositionality in 

emergent languages, measuring its effectiveness through 

communicative performance on hidden referents and 

geometric similarities. 

11.1. Contributions 

This section presents 

• The Graphical Referential Game (GREG) for studying 

sign emergence in a graphical sensory motor framework. 

• CURVES: a contrastive multimodal encoder with a 

generative model for graphical language emergence. 

• Performance evaluation of CURVES on unseen structures 

in various settings. 

• Comparative analysis of emerging language structure, 

focusing on vocabulary stability and compositionality 

scores via Hausdorff distance. 
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Fig. 8 (a) Agents’ encoder architecture. Referents and expressions map 

to a shared latent space, where energy is computed as cosine similarity, 

and (b) Cosine similarity framework update. Agents calculate the 

energy for all referents and expressions, updating positive samples while 

minimizing negatives. 

12. Graphical Referential Games 
We concentrate on referential games, including a speaker 

(S) and an audience (L). Each game begins with a set R of n 

objects (referents) and an objective r⋆ ∈ R. The speaker 

delivers an articulation u, and the audience chooses rˆ ∈ R. The 

game succeeds if rˆ = r⋆. 

12.1. SetupReferents 

Referents are balanced vector highlights (one-hot 

vectors). For m highlights Fm, the referent set is Rm = {P
f∈S f | 

S ⊆ Fm}, with subsets of k highlights

.  

Here, m = 5. 

Highlights from the MNIST dataset are planned by means 

of Φ : Rm → R˜
m. Referents are introduced as 4 × 4 

frameworks, with specialists seeing alternate points of view: 

R˜
S (speaker) and R˜

L (audience). 

12.1.1. Configurations 

• One-hot: r ∈ Rm. 

• Visual-shared: r ∈ R˜
m, R˜

S = R˜
L. 

• Visual-unshared: r ∈ R˜
m, R˜

S ̸= R˜
L. 

12.1.2. Sensory-motor Drawing System 

Articulations are produced by M : Rm → U ⊂ RD×D 

utilizing Dynamical Development Natives (DMPs), defined 

by c ∈ R20. Smooth directions T = {vi} are rendered into D×D 

images (D = 52) by means of Differentiable Rendering. 

 
 

12.2. Objectives We Address 

• Can the agent solve the game and generalize to 

compositional referents? 

• Are the articulations interpretable and consistent? 

• Do articulations display compositional principles? 

 

Performance: Specialists’ training referents:  

Rtrain = ; testing: . 

Interpretability: Hausdorff distance dH(T1,T2) assesses 

similarity: 

dH(T1,T2) = max{sup d(v,T2), sup d(T1,v′)}. 

v∈T1 v′∈T2 

Measurements: 

• Expert Knowledge: Similarity of articulations for a 

referent. 

• Viewpoint Clarity: Similarity of articulations across 

viewpoints. 

• Referent Clarity: Similarity of articulations across 

referents. 

Compositionality: Compositional score ρ measures 

articulation comparability for compositional referents u(rij) 

comparative with u(ri) and u(rj). 

1 13. CURVES: Contrastive Articulation Referent 

Agreeable Scoring  
It is an energy-based approach with two parts: 

• Contrastive learning of an energy scene E(r,u) by means 

of cosine comparability. 

• Articulation age amplifying energy for rS
⋆. 

1.1 13.1. Agents and Collaboration 

Specialists A ∈ {A1,A2} utilize unmistakable CNN 

encoders fA (referents) and gA (articulations), planning to a 

common d-layered space: zrA = fA(r), zuA = gA(u). Energy scene: 

EA(r,u) = cos(fA(r),gA(u)). 

The result is o = 1[rˆ=r⋆] − b, where b is the benchmark 

achievement rate. 

Contrastive Learning: Specialists register closeness grids 

ΣA: 

, 

with the goal: 

, 

Where ei is a one-hot vector. Speaker and audience 

misfortunes: 

 

13.2. Expression Generation: Two Strategies 

• Distinct: Boost cosine comparability for rS
⋆: 

c⋆ = argmax E(rS
⋆,M(c)). 

c∈Rp 

• Discriminative: Limit cross-entropy for rS
⋆: 
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c⋆ = argmin CE(σS,erS⋆), 

c∈Rp 

Where σS contains comparability scores for R˜
S. 

14. Experiments 
14.1. Communicative Performance 

Specialists made close amazing preparation progress rates 

(SR) across every game setting (one-hot, visual-shared, and 

visual-unshared). 

14.1.1. Generalization to Compositional Referents 
Table 1 shows speculation execution on compositional 

referents  ) inside thorough settings (|R| = 10). 

Standard correlations incorporate a random technique 

(SRrandom = 0.1) and a single-feature procedure (SR1-feature = 

0.25).  

Specialists performed well across referent sorts, with one-

hot settings yielding the most elevated SR, while execution in 

visual settings declined because of added intricacy according 

to point-of-view shifts. Curiously, enlightening and 

discriminative expressions made comparable progress rates, 

demonstrating that limiting uncertainty in articulations doesn’t 

essentially support speculation execution. 

14.2. Emergent Language Structure 

14.2.1. Coherence 

Specialists exhibited expanding between specialist, 

between the point of view and between referent lucidness 

during preparation. Higher intelligence scores compared to 

merging correspondence conventions. For visual referents, 

particular signs arose, showing specialists’ capacity to really 

separate referents. 

14.2.2. Compositionality 

While specialists accomplished high SR for one-hot 

compositional referents, the produced articulations needed 

clear compositional designs. Examinations utilizing 

mathematical mappings, like distance measurements, showed 

a restricted vicinity between signals for compositional and 

individual referents, as portrayed in Figure 10. 

 

14.2.3. Conclusion 

Regardless of the shortfall of unequivocal compositional 

designs in created articulations, inward portrayals recommend 

specialists use compositional procedures. Compelled test 

arrangements are fundamental for additional investigation of 

rising language properties. 

Table 1. Generalization success rates for compositional referents, 

evaluated across different game settings 

Setting Descriptive SR Discriminative SR 

One-hot .99± .01 .99± .01 

Visual-shared .57± .03 .56± .03 

Visual-unshared .39± .02 .40± .02 

Table 2. Training and test success rates without perspective variability 

Setting Training SR Test SR 

One-hot .99± .01 .96± .02 

Visual-shared .99± .01 .55± .03 

Visual-unshared .99± .01 .41± .02 
 

 
(a) ρ = −0.401   (b) ρ = 0.147 

Fig. 9 Topographic map models for a solitary seed in onehot referents 

setting 

 
Fig. 10 Matrix of arrangements 

Every expression names a compositional referent and is 

shaded in blue in the event that it contains highlight i (R[i,X]), 

orange in the event that it contains include j (R[X,j]), green 

assuming it contains both (R[i,j]), and dark assuming it 

contains none (R[X,X]). (a) Relating to the most terrible 

geographical score ρ = −0.401 (mix of component i = 2 and j 

= 3) (b) Comparing to the best geological score ρ = 0.147 (mix 

of element i = 0 and j = 4). Blue outlines address expressions 

created for a viewpoint in , and other expressions signify 

the comparing syntheses in  

15. Experimental Design and Evaluation Metrics 
To evaluate the efficacy of autotelic Reinforcement 

Learning (RL), a structured experimental setup was devised. 

The primary objective was to assess the agents’ ability to 

autonomously generate and master diverse goals in dynamic 

environments. The experimental design encompassed the 

following key aspects: 

Environment Configuration: Agents were trained in 

simulated environments characterized by varying complexity 
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levels. These environments included tasks requiring object 

manipulation, maze navigation, and abstract problem-solving, 

ensuring a comprehensive evaluation of agent capabilities.  

Evaluation Metrics:  

• Exploration: Quantified using diversity measures that 

assess the range of goals generated and achieved by the 

agent.  

• Generalization: Evaluated by testing agents on unseen 

goals and scenarios, measuring success rates compared to 

training tasks.  

• Robustness: Assessed through perturbation tests, where 

environmental variables were systematically altered to 

determine the agent’s adaptability.  

Implementation Details: The experimental framework 

incorporated various RL algorithms as baselines, enabling a 

comparative analysis of the autotelic framework against 

traditional approaches. Hyperparameter settings, training 

iterations, and computational resources were standardized 

across all experiments for consistency. This detailed 

experimental framework ensures that the proposed metrics 

capture the multifaceted performance of autotelic RL agents, 

providing a robust foundation for assessing their capabilities. 

16. Discussion 
In this part we formalized GREG: another biological 

referential game where two specialists should convey by 

means of a persistent tangible engine framework emulating a 

mechanical arm drawing outlines. To handle GREG, we 

propose CURVES: a contrastive portrayal of learning 

calculation enlivened by early language game contrastive 

execution that scales to high-layered signals. CURVES 

permits a gathering of two specialists two combine on a 

common graphical language in settings where referents are 

one-hot vectors or pictures of MNIST digits. The portrayals 

that specialists learn to empower them to convey 

compositional referents never experienced during preparation. 

Assuming the Haussdorf distance shows that rising signs are 

intelligent, it doesn’t catch compositionality among them. 

Future work might use our natural arrangement and 

algorithmic answer to try different things with and test various 

theories that impact structures in self-coordinating using 

frameworks. An examination of the effect of the tangible 

engine imperatives on the geography of graphical signs could, 

for example, give a significant understanding of the natural 

elements working with the development of a compositional 

graphical language. Motivated by work on the social 

development of language, our arrangement can likewise act as 

a premise to explore and imagine the effect of different factors 

like populace dynamics or the mental capacities of specialists 

(with fluctuating memory or perceptual frameworks). At long 

last, CURVES is rationalist to the methodology used to 

address expressions. All things considered, it could handle 

other tactile engine frameworks. The focal component of 

CURVES lies in the contrastive learning of expression referent 

affiliations. In our execution, we improve expressions by 

boosting this energy through angle climb. Similar to the Clasp 

that opened numerous roads for multi-modular age, we could 

connect more intricate generative techniques like dispersion 

models. 

17. Learning to Guide and to be Directed in the 

Draftsman Developer Problem 
In this section, we explore the emergence of goal-directed 

communication between artificial agents in a novel setting, 

contrasting with the classical referential game where agents 

share the reward function. Specifically, we study collaboration 

between a builder - who performs actions but lacks access to 

rewards - and an architect - who guides the builder towards 

the task’s goal. This scenario requires agents to learn a task 

while simultaneously developing a communication protocol 

without predefined meanings. Drawing inspiration from 

Experimental Semiotics, we introduce the Architect-Builder 

Problem (ABP), where the architect knows the goal but can 

only send messages, while the builder acts without knowing 

the task, relying on the architect’s guidance. We propose 

Architect Builder Iterated Guiding (ABIG), where the 

architect uses a learned model of the builder to guide it, and 

the builder employs self-imitation learning to reinforce its 

behavior. ABIG organizes interactions into structured frames, 

enabling agents to develop a reusable communication 

protocol, tested in a 2D environment with tasks like grasping 

cubes and building shapes, demonstrating effective 

generalization to unseen tasks. 

17.1. Sociocultural Dynamics in Autotelic RL 

Socio-cultural dynamics underpinning autotelic RL draw 

inspiration from human learning, where interactions with 

peers and the environment significantly influence skill 

acquisition. This study explores the integration of these 

dynamics into artificial agents, leveraging frameworks from 

developmental psychology and cognitive science.  

• Theoretical Foundations: Sociocultural theories, such as 

Vygotsky’s concept of the Zone of Proximal 

Development (ZPD), highlight how collaboration and 

shared knowledge accelerate learning 

• By embedding similar principles into RL agents, the study 

aims to foster goal imagination and refinement through 

simulated peer interactions.  

• Agent Interactions: Agents were immersed in 

environments where they could interact with other agents 

or simulated humans, exchanging information and 

adopting sociocultural conventions. For example, agents 

used language-like constructs to negotiate tasks and 

shared strategies for goal achievement.  

• Implications for Learning: Sociocultural interactions 

enhanced the agents’ ability to:  

▪ Generate novel goals inspired by peer actions.  
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▪ Learn more efficiently by observing and imitating 

successful strategies.  

▪ Adapt to changing environmental dynamics by 

internalizing shared conventions.  

This subsection provides a deeper understanding of how 

sociocultural factors can be operationalized in autotelic RL 

frameworks, advancing the design of autonomous agents 

capable of emulating human-like adaptability and creativity. 

18. Motivations 
People possess the ability to surprise, educate, and learn 

from one another, enabling the transfer and refinement of 

knowledge across generations. Even without a shared 

language or prior understanding, such as a parent teaching a 

child to stack blocks, humans can teach and learn through 

indirect signals and interactions. Experimental Semiotics 

studies the forms of communication that emerge when pre-

established ones cannot be used, showing that humans can 

teach and learn without explicit demonstrations or shared 

protocols. For instance, explored a CoCo game where an 

architect guides a builder to construct a structure using 

arbitrary signals. This raises the question: can artificial agents 

develop such social conventions? 

Inspired by the CoCo game, we propose the Architect 

Builder Problem (ABP), a framework where learning occurs 

through social interaction with Markov Decision Processes 

(MDPs) without direct imitation or reinforcement. The 

constraints of ABP are:  

(1) The builder has no prior knowledge of the task. 

(2) The architect can only communicate via signals.  

(3) These signals have no predefined meaning. 

These challenges make ABP suitable for exploring 

Human  Robot Interaction (HRI), especially in settings like 

Brain Computer Interfaces (BCIs), where signals and 

meanings must be learned interactively. To address ABP, we 

propose Architect-Builder Iterated Guiding (ABIG), an 

algorithm inspired by shared intent and interaction frames. 

ABIG allows both agents to iteratively learn and refine their 

communication protocols. 

19. Designer Developer Problem 
19.1. Planner Developer Issue 

 We consider a multispecialist arrangement made out of 

two specialists: a planner and a developer. The two specialists 

notice the climate state s, yet only the planner knows the 

objective within reach. The engineer can’t make moves in the 

climate yet gets the natural prize r, though the manufacturer 

gets no award and has, in this manner, no information about 

the job that needs to be done. In this uneven arrangement, the 

modeler can collaborate with the developer through a 

correspondence signal m examined from its strategy πA(m|s). 

These messages, which have no deduced implications, are 

gotten by the developer, which acts as per its approach 

πB(a|s,m). This makes the climate change to another state s′ 

tested from PE(s′|s,a), and the designer gets reward r′. 

Messages are sent at each time step. The CoCo game that 

propelled ABP is outlined in Figure 11(a), while the general 

designer developer climate connection chart is given in Figure 

11(b). The distinctions between the ABP setting and the MARL 

and IRL settings are represented. The engineer and the 

developer ought to team up to assemble the development focus 

while situated in various rooms. The engineering has an image 

of the objective while the manufacturer approaches the blocks. 

The planner screens the manufacturer’s work area by means 

of a camera (video transfer) and can speak with the developer 

just using 10 images (button occasions). (b) Interaction chart 

between the specialists and the climate in our proposed ABP. 

The draftsman conveys messages (m) to the manufacturer. Just 

the developer can act (a) in the climate. The developer 

conditions its activity on the message sent by the manufacturer 

(πB(a|s,m)). The manufacturer never sees any compensation 

for the climate. A schematic perspective on the identical ABP 

issue. 

 
(a)  (b) 

Fig. 11(a) Schematic perspective on the CoCo Game (the motivation for 

ABP), (b) Designer developer climate connection chart  
 

BuildWorld: We direct our trials in BuildWorld. 

BuildWorld is a 2D development framework universe of size 

(w × h). Toward the start of an episode, the specialist and Nb 

blocks are produced at various arbitrary areas. The specialist 

can explore this world and handle blocks by enacting its 

gripper while on a block. The activity space A is discrete and 

incorporates a ”sit idle” activity (|A| = 6). At each time step, 

the specialist notices its situation in the framework, its gripper 

state, as well as the place of the relative multitude of blocks 

and on the off chance that they have gotten a handle on (|S| = 

3 + 3Nb). Tasks. BuildWorld contains 4 different preparation 

errands: ’Handle’: The specialist should get a handle on any 

of the blocks; ’Spot’: The specialist should put any block at a 

predefined area in the lattice; ’H-Line’:  The specialist should 

put every one of the blocks in a flat line design; ’V-Line’:The 

specialist should put every one of the blocks in an upward line 

design. BuildWorld likewise has a harder fifth testing task, ’6-

blocksshapes’, that comprises additional mind-boggling 

designs, and that is utilized to challenge a calculation’s 

exchange capacities. For all assignments, rewards are 

inadequate and possibly given when the undertaking is 

finished. This climate typifies the intuitive learning challenge 
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of ABP while eliminating the requirement for complex insight 

or movement. In the RL setting, where a similar specialist acts 

and gets rewards, the specialist that demonstrates in the 

climate is likewise the one that gets the ground-truth reward. 

This climate wouldn’t be exceptionally noteworthy. In any 

case, it still needs to be demonstrated the way that the 

undertakings can be settled in the testing learning setting of 

ABP (with a prize less developer and an activity-less modeler).  

19.2. Communication 

 The engineer directs the developer by sending messages 

m which are one-hot vectors of size |V| going from 2 to 72. 

19.3. Additional Suppositions  

To zero in on the planner developer cooperations and the 

learning of a common correspondence convention, the 

draftsman approaches PE(s′|s,a) and to the prize capability 

r(s,a) of the current objective. This is expected to be that, 

assuming the planner were to act in the climate rather than the 

manufacturer, it would have the option to rapidly sort out some 

way to address the errand. This supposition is viable with the 

CoCo game trial where people members, and specifically the 

engineers, are known to have such world models. 

20. ABIG: Draftsman Manufacturer Iterated 

Guiding 
20.1. Analytical Description 

Agents-MDPs. In the Planner-Builder problem, agents 

operate in distinct but coupled MDPs based on their 

perspectives. For the planner, messages act as actions that 

influence both the next state and reward. The planner knows 

the environment’s transition function PE(s′|s,a) and the reward 

function r(s,a), which are independent of messages. This 

allows the planner to predict how its messages will affect the 

builder’s actions, guiding the reward and subsequent states. 

The builder’s state, however, includes both the environment 

state and the message, making state transitions more complex 

as message dynamics must be captured. Despite this, the 

builder can leverage its knowledge of the planner’s message 

choices, which are based on the current environment state.  

Under shared planning assumptions, planner-builder 

interactions, where the planner optimizes its policy   to 

maximize GA, will also maximize GB. The builder can interpret 

these interactions as demonstrations that maximize its 

unknown reward function r˜. By performing self-imitation 

Learning on these interaction trajectories τ, the builder can 

reinforce its behavior towards the planner’s guidance, making 

the builder’s MDP non-stationary. To address this, agents rely 

on interaction frames where one agent’s policy is fixed while 

the other learns, restoring stationarity. The planner’s MDP is 

defined as MA = ⟨S,V,PA,rA,γ⟩, and the builder’s MDP as MB = 

⟨S × V,A,PB,∅,γ⟩, where πA, πB, PA, PB, and reward functions 

are defined as above. 

20.2. Practical Algorithm 

ABIG iteratively structures interactions between an 

architect builder pair into interaction frames. Each cycle starts 

with a modeling frame, where the architect learns a model of 

the builder’s behavior. This is followed by the guiding frame, 

where the architect uses the learned model to produce 

messages that guide the builder. The builder stores these 

interactions to refine its policy πB through self-imitation. The 

guiding frame involves the architect using Monte Carlo Tree 

Search (MCTS) to generate optimal messages based on 

simulated builder reactions. The builder then updates its 

policy with Behavioral Cloning (BC) on stored interactions 

DB.  

ABIG is general and can handle various tasks without 

limiting the type of communication protocol that emerges. We 

also investigate two control settings: ABIG -no-intent, where 

the builder interacts with an architect sending random 

messages during training, and random, where the builder takes 

random actions. These control settings help measure the 

impact of self-imitation during guiding versus non-guiding 

interactions, with random actions providing a performance 

lower bound. All models use two-layer 126-unit ReLu 

networks, and the architect’s MCTS employs UCT heuristics 

for further details on training and hyperparameters. BC 

optimizes the cross-entropy loss using the Adam optimizer. 

 
Fig. 12 Architect-developer iterated guiding 

Specialists iteratively cooperate through the displaying 

and directing edges. In each edge, one specialist gathers 

information and works on its arrangement while the other 

specialist’s way of behaving is fixed. Modeling Casing: The 

modeler records an informational index of collaboration. 

21. Conclusion and Future Work 
This work formalizes the Architect-Builder Problem 

(ABP) as an intelligent setting where agents learn to 

collaborate without explicit support, examples, or a shared 

language. To address the ABP, we propose the Architect-

Builder Interaction Mechanism (ABIM), a method that 

enables agents to both guide and be guided. ABIM relies on 

two high-level priors for communication development: shared 
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intentionality and interaction frames. The flexible design of 

ABP allows us to enforce these priors during learning 

formally. Through ablation studies, we highlight the critical 

role of shared intentionality, achieved via self-imitation of 

guiding actions. When applied in interaction frames, this 

mechanism enables agents to develop a communication 

protocol that allows them to solve all tasks in BuildWorld. 

Remarkably, we find that communication protocols learned on 

simpler tasks can be extended to tackle harder, unseen 

challenges. Despite its effectiveness, our approach has some 

limitations that present opportunities for future research.  

First, ABIM trains agents in a fixed interaction 

framework, which involves several structured episodes, 

making it data-inefficient. A potential direction for 

improvement is to relax this stationarity assumption and allow 

agents to learn from dynamic, non- stationary data buffers 

containing past behaviors. Second, the builder remains 

dependent on the architect’s guidance even during 

convergence. A Vygotskian approach could allow the builder 

to internalize the architect’s guidance, becoming more 

autonomous. For instance, the builder could learn a model of 

the architect’s messaging strategy after communication 

protocols stabilize. Further research could explore memory 

mechanisms to facilitate feedback loops, experiment with 

low-frequency feedback, or investigate compositional 

message structures.  

Ultimately, ABP provides a testbed for studying the 

fundamental mechanisms of emergent communication and the 

impact of high-level communication priors from experimental 

semiotics. 

Algorithm 1: Architect-Manufacturer Iterated Directing 

(ABIG) 

Require :  

haphazardly introduced manufacturer strategy πB, reward 

capability r, change capability PE, BC calculation, MCTS 

calculation 

for i in range(Niterations) do 

Modelling Frame: 

for e in range(Ncollect/2) do Engineer populates DA utilizing m 

∼ Uniform() and noticing a ∼ πB(·|s,m) 

end for 

Engineer learns π˜B(a|s,m) on DA with BC Engineer sets πA(m|s) 

≜ MCTS(r,π˜B,PE) 

Engineer flushes DA 

Guiding Frame: 

for e in range(Ncollect/2) do manufacturer populates DB 

utilizing πB while directed by designer, for example m ∼ 

πA(·|s) 

end for 

Manufacturer learns πB(a|s,m) on DB with BC 

Manufacturer flushes DB end for 

Designer runs one final Demonstrating frame 

Result: πA, πB 
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